

MITT ROMNEY

Governor KERRY HEALEY

Lieutenant Governor

THE COMMONWEALTH OF MASSACHUSETTS **Executive Office of Environmental Affairs** Department of Agricultural Resources

251 Causeway Street, Suite 500, Boston, MA 02114 617-626-1700 fax 617-626-1850 www.Mass.gov/DFA

ELLEN ROY HERZFELDER Secretary

DOUGLAS P. GILLESPIE Commissioner

TRICLOPYR (Jun 23 1990)

Common Trade Name(s): Garlon 3A, Garlon 4

Chemical Name: Triclopyr [(3,5,6-Trichloro-2-pyridinyl) oxy] acetic acid

55335—06—3 CAS No:

GENERAL INFORMATION

Triclopyr is a picolinic acid derivative and is marketed as Garlon 3A the triethylamine (TEA) salt (CAS #057213-69-1) and Garlon 4 the butoxyethyl ester (CAS# 008008-20-6).

Triclopyr is effective against a wide variety of woody plants as a foliar spray, basal spray and when applied to cut surfaces. Triclopyr is absorbed by both plant leaves and roots and is readily translocated throughout the plant. It produces an auxin-type response in growing plants in that it appears to interfere with normal growth processes. Thus, maximal plant response occurs when applications are made soon after full leaf development and when there is sufficient soil moisture for plant growth.

ENVIRONMENTAL FATE

Mobility

Most laboratory and field studies indicate that Triclopyr is a relatively mobile herbicide under most conditions. Soil organic carbon partition coefficients K(oc) were determined for the TEA salt in 12 soils which ranged from 0.081% to 21.7% organic carbon. The K(oc) values range from 12 to 78 (14), indicating that Triclopyr should be mobile in most soils. In the same study the K(oc) values of trichloropyridinol, the major metabolite, were reported to range from 114 to 156 in three soils which were not identified. This indicates that trichloropyridinol is less mobile than Triclopyr and should have moderate mobility in soil(14).

In a laboratory study using sandy loam soil with a low organic matter content (0.62%), 75-80% of the applied Triclopyr leached through a 12 inch soil column between days 11 and 15. Water was applied at the rate of 0.5 inches/day for 45 days. The major degradation product, tricloropyridinol required 13 inches of applied water to elute, nearly twice as much (7.5 inches) as Triclopyr(14).

In a field study, Garlon 3A was applied at the rate of 3 gallons/ acre (9 lbs/acre) to six soils ranging from clays to loamy sands in six states. Rainfall was reported to be normal, but not given. Small amounts of Triclopyr and its metabolites were found in the 6—12 inch and 12-18 inch layers of soil 28 to 56 days after application (14,15). Although an application rate of 9 lbs per acre is rather high, the presence of Triclopyr at those depths should be noted especially since there is a correlation with the previous laboratory studies.

In other studies, Triclopyr exhibited significantly lower mobility than had been previously reported. In a field study conducted in Massachusetts, Triclopyr was applied to sandy loam soil at a rate of 0.6 lb/acre. Rainfall was reported as normal, but not given. Triclopyr was never detected below the top ten inch layer of soil at any time during the three month study (100). As part of the same study, Triclopyr was applied to soil columns containing the same soil as in the field study at the rate of 0.6 and 6.0 lbs/acre. Simulated rainfall was applied to the soil columns at a rate of 1 inch per week for a total of 5 inches. Triclopyr was not detected below the top 4 inch layer of soil (100). These results indicate lower mobility than previously reported, but they may reflect the short persistence of Triclopyr in soil rather than its mobility through the soil profile.

Persistence

Soil

Microbial degradation is the primary mechanism by which Triclopyr is degraded in soils to two metabolites (15). Degradation under anaerobic conditions (i.e. saturated soils) is reported to be 5 to 8 times slower than under aerobic conditions (14). Triclopyr in soils is not thought to be degraded to any appreciable extent by chemical hydrolysis and, due to its low volatility, is not thought to volatilize from soil to any great extent (15).

A review by TRW states that Triclopyr "is not considered to be a persistent compound in soils" (95). Studies indicate that under certain conditions the half-life of Triclopyr can be relatively short. The Dow Chemical Company has reported a half-life of 10 days in silty clay loam (96). In a small West Virginia watershed the half-life was estimated as between 14 and 16 days (15). Triclopyr was applied aerially at the rate of 10 lbs/acre, but much of the Triclopyr was intercepted by foliage. Average Triclopyr residues in soil from the treated area of this study, measured on the day of the treatment, were non—detectable in densely wooded areas, 4.4 ppm in lightly wooded areas, and 18 ppm in open areas (15). In a Massachusetts field study, the half life of Triclopyr was reported as 10 days after the applications of 0.6 and 6.0 lbs/acre Triclopyr to non-target vegetation (100).

Most other studies suggest a much longer persistence for Triclopyr in soil. In a laboratory study, Dow reported a half-life of 46 days for Triclopyr in loam. The loam was maintained in the laboratory at 95 deg F with moisture at field capacity for the duration of the study (96). A 95 deg soil temperature and moisture at field capacity are both quite high and indicate that the persistence at less than ideal conditions would be longer. Dow also reports the average half-life of Triclopyr in soil to be 30 days (101). An average half-life of 46 days is reported in the Herbicide Handbook (10) and by Ghassemi et al. (95). In addition, other investigators have reported a half—life in soil of "less than 50 days" at temperatures between 25-35 deg C, and between 79 and 156 days at 15deg C (14). In a field study conducted in Sweden, Garlon 3A was applied at the rate of 2 lbs (a.i.)/acre to eight different forest soils. Residues of Triclopyr persisted for 1 to 2 years, and in some cases in excess of 2 years, at levels approximately 10 percent or less of initial soil residue levels (15). It must be noted that soil temperature levels never exceeded 14deg C (57 deg F) and these temperatures are not favorable to microbial degradation (15). These low maximum temperatures are not typical of year round Massachusetts temperatures, but indicate the increased persistence that may occur when applications are made in the fall and are followed by cold weather.

The variable half-lives reported for Triclopyr indicate that soil half-life may be dependent on the soil and climatic conditions. As in most situations of microbial degradation; cold and, dry or saturated soils decrease the decomposition rate, while warm moist soils increase it.

Aquatic

The fate of the butoxyethyl ester of Triclopyr (TBEE) in water is summarized in Figure 1. This diagram shows the major degradation pathways for the ester in water, but does not include processes such as sediment and particulate adsorption. The fate of the ester in water has also been simulated with a modelling technique by McCall et al., 1988 (115). A recent study by Woodburn (116) with the triethylamine salt of Triclopyr experimentally applied to a lake in Florida also provides useful comparative data on the persistence of Triclopyr degradation products. The degradation path is believed to be TBEE to Triclopyr acid to 3,5,6—trichloro-2pyridinol (TCP) to non-halogenated organic acids.

TBEE degrades quite rapidly in water to Triclopyr acid. Laboratory studies indicate that photolysis is the principal degradation pathway with hydrolysis also contributing (117, 118). Several studies indicate that the half-life of the ester in water can range from 1.5—2 days as a result of photolysis (117, 119). Hydrolysis half—lives are dependent upon water pH and temperature and range from 0.06 d to 208 d in natural waters. They decrease with increasing temperature and increasing pH. Acidic conditions increase the persistence of the ester substantially. The 208 d half—life was observed in natural unbuffered water at pH 5 and 15°C. Waters with this pH level occur in Massachusetts. One laboratory study has produced contradictory results where the ester was stable to hydrolysis, and little photodegradation of the ester occurred over 9 months (120). This study however was performed with buffered, sterile water. Modelling results for the dissipation of the ester indicate that decay should be fairly rapid with a half-life of 12-18 hours (115).

The acid is short-lived in the aquatic environment with reported half—lives of from 2.1 hours at the water's surface in summer at **40deg** N latitude to 14 hr at 1m water depth in winter (117). The principal decay product of the acid is 3,5,6-trichloro-2-pyridinol (TCP), a transient metabolite in water with half—lives ranging from minutes to one day (121). TCP rapidly degrades into nonhalagenated, low molecular weight organic acids (116,121), with phototransformation playing a larger role than hydrolysis in this process.

Salomon et al. (118) demonstrated a half—life of 3.8-4.3 days at 16-17 deg C for the ester to TCP step in an Ontario Lake. Woodburn (116) added Triclopyr salt to a Florida lake and determined a half—life of 0.5—3.6 d at 300 C for the salt to organic acid step. The time scales of both of these studies are in general agreement with the other data on the time course of breakdown for the ester (or salt) to organic acids. With the exceptions of the Hamaker (120) study and a slow breakdown at pH 5, most studies indicate that TBEE in water is degraded relatively rapidly.

TOXICITY REVIEW

Acute (Mammalian)

The Triclopyr toxicity database has been reviewed in several places including the GEIR on the Control of Vegetation on Utility and Railroad Rights-of-Way in Massachusetts (14), Herbicide Handbook Weed Science Society of America (10), and by the U.S. Forest Service (15). Several Dow Publications review the Triclopyr information (101) and Garlon products (102 and 103).

The oral LD5O for Triclopyr in rats is 729 mg/kg in males and 630 mg/kg in females (15, 101).

The rat oral LD5O for combined sexes has been reported as 713 mg/kg (10, 14). Rabbits and guinea pigs are more susceptible to oral administration of Triclopyr with LDSOs of 550 and 310 mg/kg respectively (14, 15, 10). The Garlon products have oral LD5Os of greater than 2000 mg/kg (10, 14, 15, 101, 103, 103).

The dermal LD5Os are greater than 2000 mg/kg in rabbits (Triclopyr), and greater than 3980 mg/kg in rabbits for Garlon 4 and Garlon 3A (101, 102, 103)

The effects of Triclopyr on the eye are dependent on the chemical derivative involved: the butoxyethyl ester found in Garlon 4 is essentially non—irritating (102, 15, 14, and 101), while the triethylamine salt is not only an irritant but can cause serious injury (101, 14, 15). These eye injuries include conjunctival irritation, moderate internal redness and moderate to severe corneal damage which may be permanent (14). An inhalation study showed that 100% of the test rats survived a 1 hour exposure to 3 to 20 dilutions of Garlon 3A in air. Transitory nasal irritation to rats was noted after a 4 hour exposure to Garlon 4 aerosol (14).

Metabolism

Two studies, one dermal and one oral have been done in humans to determine pharmacokinetic and metabolic profiles. Five mg/kg acid equivalent (ae) was applied to the forearm of 5 volunteers in the dermal study. One point five eight percent to 1.11% of the applied dose was absorbed and the percutaneous absorption half -life was 16.8 hours (108). In the oral study, 6 volunteers received 0.1 or 0.5 mg/kg Triclopyr (acid equivalent) in apple juice. The excretion half—life is 5 hours and 80% of the dose is recovered as unchanged Triclopyr in the urine (109). The 20% which was unaccounted for could be attributed to one of several explanations including incomplete collections of urine, incomplete absorption of material or metabolism to an unknown metabolite.

Subchronic/Chronic Studies (Mammalian)

Long—term bioassays have been done using Triclopyr in rats (107) and mice (106). Summaries of these studies, provided by Dow Chemical Company have been reviewed for this discussion.

Fischer 344 rats received 5, 20, 50 or 250 mg/kg/d in a preliminary 13 week study. There was a decrease in body weight gain at 50 and 250 mg/kg/d and kidney effects were observed in both sexes at doses of 20 mg/kg or greater (107). In the full two year study, the doses were 0, 3, 12 and 36 mg/kg/d. The dose related effects in the males were increased body weight at 12 and 36 mg/kg/d, and in females there was an increase in pigmentation in the proximal tubules at 3, 12 and 36 mg/kg/d. Neither the weight increase in the males nor the increased pigmentation in the females were accompanied by morphological, histological or functional changes. The NOAEL for males and females was reported to be 3 mg/kg/d (107).

In the mouse bioassay, ICR mice received Triclopyr in their diets for twenty-two months. The doses were 0, 50, 250, 1250 ppm (0, 5, 55, 28.6 and 143 mg/kg/d in males and 0, 5.09, 26.5 and 135 mg/kg/d in females). The range finding study included doses of 0, 200, 400, 800, 1600 or 3200 ppm. At the high dose there were decreases in body weight, anemia, changes in urine, increase in cholesterol levels and multiple changes in liver functions. Some of the liver changes were also observed in the 1600 and 800 ppm groups. There were decreases in body weights, changes in kidney and urine (at various doses and points in time) and liver effects at the 1250 ppm dose. At 250 ppm there were mild kidney effects and the NOEL was reported as 50 ppm (5.55 and 5.09 mg/kg/d for males and females respectively) (106).

In subchronic studies, the 90 day dietary NOELs were 30 mg/kg/d and 20 mg/kg/d for rats and mice, respectively. Dogs were more sensitive to dietary administration of Triclopyr, with kidney

effects (decrease in excretion) at 2.5 mg/kg/d (14, 101). Dogs refused to eat food that would result in doses of 30 and 100 mg/kg (104). In a one year study, dogs received doses of 0. 0.5, 2.5 or 5.0 mg/kg/d. Minimal kidney effects were observed at 2.5 and 5.0 mg/kg/d. These findings were considered non—adverse by Dow making the NOAEL 5.0 mg/kg/d and the NOEL 0.5 mg/kg/d (105).

Two monkey studies were done to investigate kidney effects in primates. In one study, the monkeys received 0, 10, 20 or 30 mg/kg/d in diet for 28 days. There was no effect on urinary excretion or other responses observed (101, 104). In a second study, 4 monkeys received Triclopyr at 5 mg/kg/d for 28 days, the dose was then increased to 20 mg/kg/d for 102 days. The effects observed in this study were stool softening and diarrhea (104).

Oncocrenicity Studies

There have been two chronic bioassays done for Triclopyr. Rats received 0, 3, 12 or 36 mg/kg/d and mice received 0, 50, 250 or 1250 ppm (0, 5.55, 28.6, 143 mg/kg/d for males and 0, 5.09, 26.5 and 135 mg/kg/d for females). The only positive result was an increase in combined incidence of mammary adenomas and adenocarcinomas in the female rats at the high dose. There was no evidence of multiple tumors and the effect was not dose related (107, 106).

Mutagenicity Testing

Triclopyr has been tested for mutagenicity in a variety of test systems and found to be weakly positive in one, the dominant lethal study in rats. Triclopyr was non-mutagenic in bacterial assay systems, cytogenic assays, and mouse dominant lethal studies (15).

Developmental Studies

The teratology of Triclopyr was investigated using the rabbit model. Doses in the range finding study were 0, 25, 50, 100 and 200 mg/kg. There was 50% and 71% mortality in the 100 and 200 mg/kg groups respectively. The doses used in the full study were 0, 10, 25 and 75 mg/kg/d for days 6 to 18 of gestation. There were 16 rabbits per dose group. One dam in the 25 mg/kg/d group aborted and one dam in the 75 mg/kg/d group died. In the 25 mg/kg group one fetus had hyperplasia of the aortic arch with pulmonary arterial semilunar valve stenosis. Another fetus had a missing gall bladder. There was a statistically significant but non-dose related increase in resorptions at 10 mg/kg/d. This increase was within historical control variability. The developmental NOEL was reported as 75 mg/kg/d with a slight increase in maternal mortality (110)

Tolerances and Other Guidelines

Tolerances are set for Triclopyr on 5 raw agricultural commodities: grasses, forage (500 ppm); grasses, forage, hay (500 ppm); milk (0.01 ppm); meat, fat and meat by products (except liver and kidney) of cattle, goats, hogs, horses, and sheep (0.05 ppm); and liver and kidney of cattle, goats, hogs, horses, and sheep (0.5) ppm (8).

The Dow internal guideline for inhalation exposure to Triclopyr is 10 milligrams/cubic meter (102, 103).

Avian

The toxic effects of Triclopyr on birds have been investigated in a small number of studies

conducted by the Dow Chemical Company. For mallard ducks, acute oral LCSOs are reported at 1,698 mg/kg for unformulated Triclopyr, 3,176 mg/kg for Garlon 3A, and 4,640 mg/kg for Garlon 4. Eight day subchronic oral LC5Os are reported as follows for the various triclopyr formulations:

Triclopyr	mallard duck	LC5O = 5,000 ppm
	bobwhite quail	LC5O = 2,935 ppm
	Japanese quail	LCSO = 3,278 ppm
Garlon 3A	mallard duck	LC5O=10,000 ppm
	bobwhite quail	LC5O=11,622 ppm
Garlon 4	mallard duck	LCSO=10,000 ppm
	bobwhite quail	LC5O=9,026 ppm

Source: (15)

The data summarized above indicate low acute and subchronic toxicity to the bird species tested. No field studies on the toxic effects of Triclopyr or its formulations in birds have been reported (15).

Invertebrates

Very little data were available on the invertebrate and microorganism toxicity of Triclopyr. The data reported are primarily for the triethylamine salt (Garlon 3A) and were generated by the Dow Chemical Company.

The data indicate low acute lethal toxicity* to organisms tested, with a 96 hr LC5O of 895 ppm in shrimp, 96 hr LC5O greater than 1000 ppm in crabs, and 48 hr LC5Os ranging between 56 and 87 ppm in oysters (15). The 48 hr LC5O for <u>Daphnia</u> is reported as 1,170 ppm (15). After 72 hours of incubation with 500 ppm of Triclopyr, no apparent effects on growth were observed in six soil microorganisms when compared to a control (15).

No information was obtained on the invertebrate toxicity of Garlon 4, the butoxyethyl ester of Triclopyr.

Aquatic

The available information on Triclopyr toxicity to fish indicate a wide response of fish to the two formulations of Triclopyr and to unformulated Triclopyr. The butoxyethyl ester of Triclopyr (Garlon 4) is "highly toxic to fish", based upon the Clarke et al. criteria. The 96 hour LC50 values for rainbow trout and bluegill sunfish are 0.74 and 0.87 ppm respectively (15). The corresponding value for juvenile Coho salmon is 1.3 ppm (122).

The triethylamine salt formulation (Garlon 3A) is "slightly toxic" to fish with 96 hour LC5Os of 552 and 891 ppm for rainbow trout and bluegills respectively. The corresponding values for unformulated Triclopyr are 117 ppm for rainbow trout and 148 ppm for bluegill. Both fish species were less sensitive to Garlon 3A than to the active ingredient (15).

No fish toxicity data are available for 3,5,6—trichloro—2—pyridinol (TCP), the intermediate breakdown product from the Triclopyr acid to the non—halogenated organic acid end product.

Dow Chemical Company reports that in natural soil and aquatic environments, both amine and ester formulations rapidly convert (photodegrade) to Triclopyr acid, which in turn is neutralized to a salt at normal environment pH (5.5-6.5)(15). No information is provided with any of the fish toxicity data on the actual form of Triclopyr present in the test water. The persistence data summarized in a previous section and the simulation results of McCall et al. (115), however provide a description of the probable fate of Triclopyr in the toxicity test tanks. The majority of the fish mortalities during the toxicity tests with bluegill sunfish and rainbow trout exposed to the ester occurred during the first 24 hours of the test: a pattern consistent with the change of the toxic ester form to less toxic breakdown products during this period (124).

EXPOSURE ASSESSMENT

For the exposure assessment, we have chosen to analyze the fate of the butoxyethyl ester form of Triclopyr (Garlon 4) in water because of its reported high aquatic toxicity in laboratory studies. Garlon 4 would be applied basally at an average application rate of 0.5 pints per acre for the proposed utility program.

In aquatic organisms, LC5Os greater than 10 ppm are considered to be indicative of only slight toxicity and LC5Os less than 1 ppm are considered to reflect high acute toxicity (Clarke et al., 1970 as referenced in [15]).

Since Garlon 4 contains 61.6% of the active ingredient, this application could distribute 37 mg Triclopyr BEE/m². The requested maximum application rate is 2 pints per acre.

Two aquatic exposure scenarios have been constructed to evaluate the potential contamination of non-target surface waters with Garlon 4 from a typical land application. The first, most extreme, and very unlikely scenario is for the case of a static stream traversing a treated acre with a percentage of all of the herbicide applied to the acre running into the water. The second represents a more shallow, static stream or standing water body of much less volume with runoff from a portion of the bordering land.

```
SCENARIO (1)
```

```
ASSUMPTIONS:
```

Application rate = 0.5 pint/acre

0.47 L/pint

61.6% active ingredient

20% of herbicide applied to acre runs off

density of applied herbicide = 1.0 g/ml

RUNOFF:

 $0.20 \times 0.5 \text{ pt/acre } \times 0.47 \text{ L/pt } \times 0.616 = 0.03 \text{ L/acre}$

RECEIVING WATER:

Static stream crossing a treated acre

 $0.3 \times 1.22 \times 64 \text{ m} = 23.4 \text{ in}^3 \text{ (volume)}$ Dimension:

DILUTION:

0.03L into $23.4 \text{ m} = 1.3 \text{ mL/m}^3$

 $1.3 \text{ mL/m}^3 \text{ x } 1 \text{ m}^3 / 10^3 \text{ L} = 1.3 \text{ x } 10 \text{ mL/L}$

 $1.3 \times 10^{-3} \text{ mL/L} \times 1 \text{ g/ml} \times 10^{3} \text{ mg/g} = 1.3 \text{ mg TBEE/L}$

2

SCENARIO (2)

ASSUMPTIONS:

Application Rate = 0.5 pt/acre

0.47 L/pt

61.6% active ingredient

20% of herbicide applied to 3m² runs off

density of applied herbicide = 1.0 g/ml

RUNOFF:

0.2 x 0.5 pt/acre x 0.47 L/pt x 0.616 x 2.47 $\times 10^{-4} \text{acre/m}^2 \times 10 \text{ mL/L} \times 3 \text{ m}^2 = 0.02 \text{ mL}$

RECEIVING WATER:

Static stream,

 $0.15 \times 1 \times 5 \text{ m} = 0.75 \text{ m}^3 \text{ (volume)}$ Dimensions:

DILUTION:

0.02 mL into $0.75 \text{ m}3 = 0.03 \text{ mL/m}^3$ $0.03 \quad mL/m^3 \ x \ 10^{-3} \ m/L \ x \ 10^3 \ mg/g \ x \ 1 \ g/ml = \underline{0.0}3 \ mg/L$

The calculations presented above illustrate that the probable immediate post—runoff concentrations of TBEE in static water bodies will be in the sub-parts per million range. At maximum application rates (2 pts/acre), these concentrations would range from about 0.1 to 5.2 mg/L. The concentrations for the worst exposure scenario (#1) are greater than (7x) the 96 hour LC5O concentrations for freshwater fish; those for the other scenario are almost an order of magnitude less. The no effect level for TBEE with juvenile Coho salmon is ≤ 1.0 mg/L (122). Therefore, under the worst exposure scenario with the maximum application rate of herbicide, the 96 hour LC5O could be exceeded. Under other, less extreme conditions at average application rates, predicted concentrations of the active ingredient would be substantially less than the reported no effect level in Coho salmon. The persistence characteristics of TBEE are such that the ester form of Triclopyr would not likely persist in surface waters for longer than a couple of days, except in those waters in Massachusetts which are acidic where the ester may persist for up to several months. It is also very unlikely that rainbow trout would be impacted at application rates of 0.5 pts/acre based on the reasonable scenario (#2) which predicts water concentrations of Garlon 4 less than toxic concentrations.

The following factors would also tend to reduce the exposure concentrations that fish would experience: flowing waters would provide greater dilution than assumed for static conditions; the Massachusetts Right-of-Way Management Act mandates an application setback of 10 feet from standing or flowing waters or from wetlands (33 CMR 11.04:(1) and (4) (a)); and actual runoff of the applied herbicide would probably be less than used for these sample calculations. Scenario 1 represents an extremely unlikely event where 20% of all the herbicide applied to an acre runs off into a small water course. The conditions which would foster this type of runoff across setbacks (i.e. heavy rains) would tend to turn static stream systems into flowing water courses and hence increase dilution.

The application rate used in the previous non—target species assessment (June 23, 1990) was 0.5 pints per acre applied basally. The utilities involved in managing rights-of-way and the manufacturer of Garlon 4 have since indicated that the required application rate may range as high as 2-3 quarts of Garlon 4 per acre for effective control of vegetation. The following addition to the exposure assessment examines the resultant changes in the predicted exposure concentrations that might occur in freshwater fish habitats when Garlon 4 is applied at the 2-3 quarts /acre rate.

The change in the application rate will result in the following differences in predicted exposure concentrations from those originally predicted for 0.5 pts/acre:

2 at/acre 2pt/qt = x 8X $\overline{0.5}$ pt/acre

2pt/qt = x 123at/acre X

Application rates will therefore be 8-12 times greater than for the 0.5 pts/acre case. The probable concentrations in water after runoff as previously predicted were 1.3 (Scenario 1) and 0.03 mg/L (Scenario 2) ing butoxyethyl ester of Triclopyr / L. These concentrations would therefore range from 0.24 — 15.6 ing/L for application rates between two and six quarts.

These predicted concentrations encompass and substantially exceed the reported LCSO concentrations for fish (in range of 0.7 - 1.3 mg/L and the NOEL of 1 mg/L for juvenile Coho salmon. The more realistic exposure scenario (#2) predicts exposure concentrations of the same order of magnitude as the LC5O values.

Given that the higher application rates required for vegetation control in some areas have the potential to produce potentially lethal concentrations of the butoxyethyl ester of Triclopyr to fish in water as a result of runoff, a setback greater than the mandated 10 feet from standing or flowing waters (333 CMR 11.04: (1) and (4) (a)) will provide an additional level of protection when application rates exceed 0.5 pts/acre.

SUMMARY

Triclopyr exhibits moderate mobility in most of the soils tested. Soils with higher organic carbon content would be expected to retard the mobility of Triclopyr. Trichloropyridinol, the major breakdown product, is less mobile than Triclopyr.

Microbial degradation is the primary mechanism by which Triclopyr is degraded in soils. Degradation rates are variable and appear to be dependent on the soil and climatic conditions. In Massachusetts conditions, Triclopyr can be expected to have moderate persistence when applied in warm weather (late spring —early fall), and slightly longer persistence in colder weather.713 mg/kg. Rabbits and guinea pigs have oral LDSOs of 550 and 310 mg/kg respectively. The target organ for Triclopyr is in the liver. The only positive result in the oncogenicity studies was an increase in the combined incidence of mammary adenomas and adenocarcinoinas in the female rats at the high dose. Mutagenicity tests were negative. The developmental NOEL was reported as 75 mg/kg/d with a slight increase in maternal mortality. Using EPA's carcinogen classification scheme, Triclopyr may be considered a group C carcinogen (possible human carcinogen: limited animal evidence).

RECOMMENDATION

The herbicide Garlon 4, containing the butoxyethyl ester of Triclopyr (EPA Reg. No. 464-554), is recommended for use in sensitive areas only at application rates of 0.5 pt/acre pursuant to 333 CMR 11.00. Applications at rates up to three quarts per acre are permitted with a setback of 50 feet from standing or flowing waters suitable for fish habitat. The set back restriction may be waived upon demonstration to both the Departments of Food and Agriculture and Environmental Protection that runoff concentrations from applications of Garlon 4 with setbacks less than 50 feet do not pose a threat to fish.

REFERENCES

- 8. BNA Chemical Regulation Reporter: Starts 1977
 A weekly view of activity affecting chemical users and manufacturers. Pub. by the Bureau of National Affairs Inc. 0148—7973
- 10. The Herbicide Handbook: 1983 Fifth Ed.
 Handbook of the Weed Science Society of America; Pub. by the Weed Science Society of America, Champaign, Ill.
- 14. GEIR Generic Environmental Impact Report: 1985 Control of vegetation of utilities & Railroad Rights of Way Pub. by Harrison Biotec, Cambridge, MA
- 15. Pesticide Background Statements: Aug. 1984 USDA Forest Service Agriculture Handbook #633 Vol. 1
- 95. TRW, 1981. Environmental Fates and Impacts of Major Forest Use Pesticides. US Environmental Protection Agency. Office of Pesticides and Toxic Substances. Contract No. 68—02—3174., Washington, D.C.
- 96. The Dow Chemical Company, 1983a. Technical Information on Triclopyr, The Active Ingredient of Garlon Herbicides; Technical Data Sheet No. 137—859—483. The Dow Chemical Company, Agricultural Products Department, Midland, Michigan. As cited by Pesticide Background Statements, (1984)
- 100. Soil Residues of Picloram and Triclopyr after Selective Foliar Application on Utility Rights of Way. Deubert, Karl H. and Corte—Real, I., Journal of Arborculture, 12 (11) 269.
- 101. Dow Environmental and Toxicology Profile of Garlon Herbicides. Technical Data Sheet.
- 102. Dow MSDS Sheet for Garlon 4.
- 103. Dow MSDS Sheet for Garlon 3A.
- 104. Personal communication with Dr. David Eisenbrandt 12/30/88.
- 105. Quast, J.F., et al., 1988. Triclopyr: A One-Year Dietary Toxicity Study in Beagle Dogs. The Dow Chemical Company Study ID: K—042085—036.
- Tsuda, S., et al., 1987. Triclopyr: 22-Month Oral Chronic Toxicity and Oncogenicity Study in Mice. The Institute of Environmental Toxicity, Tokyo, Japan.
- 107. Eisenbrandt, D.L., et al., 1987. Triclopyr: 2-Year Dietary Chronic Toxicity-Oncogenicity Study in Fischer 344 Rats. The Dow Chemical Company Study ID:

- HET K-042085-026.
- 108. Carmichael, N.G., et al., 1988. Human Dermal Absorption Study of GARLON 4. The Dow Chemical Ltd., Letcombe, England. Laboratory Project ID: 87/DCSO4l/835.
- 109. Carmichael, N.G., et al., 1988. A Study of the Oral Absorption and Excretion of Triclopyr in Human Volunteers The Dow Chemical Ltd., Letcombe England. Laboratory Project ID: 87/DCSO31/808.
- 110. Kirk, H.D., et al., 1988. DOWCO* 233: Oral Teratology Study in New Zealand White Rabbits. The Dow Chemical Company Study ID: HET—K—042085—042.
- Bruce, R.J., et al., 1985. Evaluation of 3,5,6-trichloro-2-pyridinol in the Mouse Bone Marrow Micronucleus Test. The Dow Chemical Company Study ID: TXT:K—038278—008.
- 115. McCall, P.J., D.A. Laskowski, and H.D.Bidlack. 1988. Simulation of the aquatic fate of Triclopyr butoxyethyl ester and its predicted effects on Coho salmon. Envtl. Tox. and Chein. 7:517—527.
- Woodburn, K.B. n.d. The aquatic dissipation of Triclopyr in Lake Seminole, Georgia. Unpublished Report. 9/12/88. Dow Chemical USA, Midland, MI. 76pp.
- 117. McCall, P.J., and P.D. Gavit. 1986. Aqueous photolysis of Triclopyr and its butoxyethyl ester and calculated environmental decomposition rates. Envtl. Tox. and Chem. 5:879—885.
- 118. Solomon, K.D., C.S. Bowhey, K. Liber and G.R. Stephenson.
 1988. Persistence of Hexazinone (Velpar), Triclopyr (Garlon), and 2,4—D in a northern Ontario aquatic environment. J. Agric. Food Chem. 36:1314-1318.
- 119. Dow Chemical USA. Letter from Dr. Frank A. Kidd to Mr. Lee Corte Real, MA DFA. Dated 9/21/89.
- 120. Hamaker, J.W. 1977. Photolysis of Triclopyr ((3,5,6-trichloro-2-pyridinyl) oxyacetic acid) in aqueous solution. GS-1467. Unpublished data of Dow Chemical USA referenced in Woodburn, n.d.
- Dilling, W.L., L.C. Lickly, T.D. Lickly, and P.G. Murphy. 1984. Organic Photochemistry. 19. Quantum yields for o ,o-diethyl o- (3,5, 6-trichloro-2-pyridinyl) phosphorothioate (Chlorpyrifos) and 3,5, 6-trichloro-2 pyridinol in dilute aqueous solutions and their environmental phototransformation rates. Environ. Sci. Technol. 18:540—543.
- Mayes, M.A., P.G. Murphy, D.L. Hopkins, F.M. Gersich, and F.A. Blanchard. 1986. The toxicity and metabolism of Triclopyr butoxyethyl ester: Coho salmon. Toxicologist 6:26 (Abstr.).
- Bidlack, H.D. 1978. The hydrolysis of Triclopyr EB ester in buffered, deionized water, natural water, and selected soils. GH-C 1106. Unpublished data of the Dow

Chemical Co.

McCarty, W.M., and H.C. Alexander. n.d. Toxicity of Triclopyr, ethylene glycol butyl ether ester to freshwater organisms. Unpublished report. Environmental Sciences Research Laboratory, Dow Chemical USA